Viability Kernels and Capture Basins of Sets Under Differential Inclusions

نویسنده

  • Jean-Pierre Aubin
چکیده

This paper provides a characterization of viability kernels and capture basins of a target viable in a constrained subset as a unique closed subset between the target and the constrained subset satisfying tangential conditions or, by duality, normal conditions. It is based on a method devised by Hélène Frankowska for characterizing the value function of an optimal control problem as generalized (contingent or viscosity) solutions to Hamilton–Jacobi equations. These abstract results, interesting by themselves, can be applied to epigraphs of functions or graphs of maps and happen to be very efficient for solving other problems, such as stopping time problems, dynamical games, boundary-value problems for systems of partial differential equations, and impulse and hybrid control systems, which are the topics of other companion papers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impulse differential inclusions: a viability approach to hybrid systems

Impulse differential inclusions are introduced as a framework for modeling hybrid phenomena. Connections to standard problems in the area of hybrid systems are discussed. Conditions are derived that allow one to determine whether a set of states is viable or invariant under the action of an impulse differential inclusion. For sets that violate these conditions, methods are developed for approxi...

متن کامل

Topological Structure of Solution Sets of Differential Inclusions: the Constrained Case

We survey and announce some current results on the existence, the viability, and the topological structure of the viable solutions of differential equations and inclusion in Banach spaces under set constraints. Some new results concerning semilinear differential inclusions with state variables constrained to the so-called regular and strictly regular sets, together with their applications, are ...

متن کامل

Viability Kernels in H

In this paper, we study two new methods for approximating the viability kernel of a given set for a HH olderian diierential inclusion. We approximate this kernel by viability kernels for discrete dynam-ical systems. We prove a convergence result when the diierential inclusion is replaced by a sequence of recursive inclusions. Furthermore , when the given set is approached by a sequence of suita...

متن کامل

Towards Computing Phase Portraits of Polygonal Differential Inclusions

Polygonal hybrid systems are a subclass of planar hybrid automata which can be represented by piecewise constant differential inclusions. Here, we study the problem of defining and constructing the phase portrait of such systems. We identify various important elements of it, such as viability and controllability kernels, and propose an algorithm for computing them all. The algorithm is based on...

متن کامل

An anti-diffusive scheme for viability problems

This paper is concerned with the numerical approximation of viability kernels. The method described here provides an alternative approach to the usual viability algorithm. We first consider a characterization of the viability kernel as the value function of a related optimal control problem, and then use a specially relevant numerical scheme for its approximation. Since this value function is d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2001